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Abstract

Social media data tends to cluster in time and space
around events, such as sports competitions and local
news-worthy phenomena. However, transforming
raw, free-form, real time text into meaningful in-
formation remains a challenging task. Confounding
factors include the massive volume of posted data,
lack of reliable event information, hidden temporal
trends, and the vastly diverse nature of content. In
the present work, we examine spatio-temporal topic
distributions and self-exciting time series models as
applied to social media microblog data. We apply topic
modeling using non-negative matrix factorization with
sparsity constraints to discover prevalent topics as well
as latent thematic word associations within topics.
We then present two methods for mining interesting
spatio-temporal dynamics and relations among topics,
one that compares the topic distributions directly, and
another that models topics over time as temporal or
spatio-temporal Hawkes process with exponential trig-
ger functions. This second method allows identification
of self-exciting topics and reveals unique temporal and
spatial relationships among them.

Keywords: mining complex datasets, spatial and tem-
poral analysis, topic modeling, cluster analysis

1 Introduction

It is apparent that microblogs such as Twitter are
composed of a vast number of diverse topics. When
viewed as a time series, some of these topics might be
observed in Tweets purely at random (topics associated
with teenage romance perhaps), or on some periodic
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basis (topics about rush hour traffic, local weather,
or a popular event). Still others, however, exhibit
patterns quite different from baseline Twitter usage.
Major holidays, one-time fads and social events, and
pseudo-periodic events such as sport matches may be
expected to produce anomalous distributions of Tweets
with respect to the overall time series of Twitter.

Restricting Twitter to the geo-tagged Tweets, we
might find a similar situation; while the entire corpus
exhibits quite complex structures, some topics may be
localized to certain areas and others may be distributed
more globally. Tweets on a specific topic that cluster
spatially, temporally or both might be of interest to
analysts, marketers, researchers, law enforcement, and
government agencies. The problem becomes one of
identifying such interesting topics automatically from
among the thousands to millions of topics observed in
collections of microblog posts. The first half of our
paper describes a method for finding these topics of
interest.

Twitter topics may also have temporal or spatio-
temporal relationships. Social events may trigger fur-
ther events, sports team victories or defeats may lead
to the discussion of the future of a player or coach’s em-
ployment, or a controversial post may trigger an explo-
sion of heated responses. In terms of topics and Tweets,
the observation of some Tweets from a topic may pre-
cede the observation of Tweets from another related
topic with some regularity. In a predictive sense, the
observation of Tweets from some topics can inform on
the incidence rate of Tweets from another [5, 28]. For
example, if we observe a number of observations in a
bad weather topic, we might expect to see a number
of observations in the traffic topic. This is indicative
of a network structure of microblog topics, where edges
represent the predictive power of one topic for another.
Recovery of this latent network structure is discussed in
the latter portion of this paper.
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Here we consider 500,000 geolocalized Twitter mes-
sages from the Los Angeles area over a ten-month pe-
riod. The Tweets are timestamped and geo-tagged (ge-
ographical location information from the user attached
to the Tweet). We cleaned the Tweets by removing stop
words and correcting misspellings, and then converted
each one into an unordered histogram of words using a
bag of words model [13], in which the order of words
does not matter. Personal information including the
user’s handle was disregarded.

We present two methods for the automated discov-
ery of such topics generated by Non-negative Matrix
Factorization, one based on the Earth Mover’s Distance
and the other based on a self-exciting point process
model.

2 Previous Work

Our methods build upon recent literature concerning
the spatio-temporal analysis of human activity patterns,
topic modelling, anomaly detection, and self-exciting
point processes.

2.1 Spatio-temporal Human Activity: It is
well-known that human activity is not uniformly dis-
tributed in space or time. Particular activity types tend
to cluster in local spatial regions, while the frequencies
of those behaviors also tend to cluster in time. The
clustered, bursty nature of human behavior has huge
implications for the organization and function of ur-
ban systems. Our own previous work has concentrated
on the spatio-temporal dynamics of crime which, like
other aspects of human behavior, forms dynamic spatio-
temporal hotspots [7, 16,18,30].

2.2 Microblogs and Related Topic Models:
Twitter as a source of data for academic study has
been in use since approximately 2007 [10], when it
was treated as a social network. Since then, it has
been a popular topic of study (so much that there
are papers about people writing about Twitter [29]).
A growing proportion of studies look principally at
Twitter content; it has been suggested that Twitter,
while presenting a social network and an information
diffusion network, may be closer to a media distribution
site, where the media is user produced [14]. Analysis of
the text content includes both general models as well as
Twitter specific models [9, 32].

Of particular note are two sub-classes of topic
model, dynamic models [2], and geospatial models
[8, 31]. For models in these two sub-classes, the set of
topics is generated with respect to a prior distribution.
The prior is dependent on the frequency of recent obser-
vations within topics, and/or the geo-spatial clustering

of observations within topics. This prior biases the se-
lection of topics, and the set of selected topics cannot be
expected to describe the data fully (indeed, the authors
do not claim such a thing), for there are topics which are
equally expressed across time and space with respect to
the overall volume of Tweets. For example, restricting
our data to Los Angeles, it is reasonable to assume all
users will experience traffic, and the frequency of Tweets
should therefore be widely distributed across space and
time (though not uniformly).

2.3 Spatial and Temporal Anomaly Detection:
Directly related to our first method is a work by Ap-
plegate et al. [1]. The authors consider only usage
data without content, applying an approximate Earth-
mover’s Distance described in [26] to cluster temporal
patterns across multiple cyclic periods (e.g. patterns
over time of day and day of the week between differ-
ent users). Our work extends the approximate Earth-
mover’s distance from regular histograms to any graphi-
cal structure (most importantly cyclic graphs), and then
provides an analysis of the resulting clusters. Our first
method is the application of a similar distance to spatio-
temporal distributions of topics.

More related to our second method are event de-
tection and summary methods. Twitter is known to
reflect real world events and news media activity. Simi-
lar to our work, Zhao et al. [32] use a Twitter generative
text model based on LDA, then match Topics between
the generated Twitter model and the New York Times.
While Zhao et al. do not investigate linkages between
topics in the same corpora, similar to the present work
the authors investigate triggers between the two cor-
pora, though not in a point process context. We extend
this idea to the point process framework in section 5
and 6.

3 Topic Models

In order to extract latent topic variables from our text
corpus, we transform our raw text data into a Bag-
of-Words vector form and then apply Non-Negative
Matrix factorization with sparse constraints. The pre-
processing work, while involved and non-trivial, is not
our focus, nor do we introduce any innovations to the
field, and so is only covered superficially here.

3.1 Pre-Processing: As found in [21], [6], and [9],
we apply significant pre-processing to our raw data be-
fore training our topic model. The steps here are un-
dertaken in order: 1. We encode the text into ASCII,
discarding any Unicode characters. 2. We replace all
double quotes with the empty string. 3. We extract all
user references and all hashtags, denoted respectively



with @ or # at the beginning of a token. 4. We attempt
to remove any urls, specifically anything prefixed with
“http”. 5. We remove many non-alphanumeric charac-
ters, with the important exception of $ and @, with the
latter only in the case that it is the only character in
the token (the @ symbol is significant in its usage by
Instagram in automatically generated Tweets). 6. We
change all characters to lowercase. 7. We remove any to-
ken on our Stop Words list, including a Twitter specific
stopwords list of the 50 most common words observed
in our dataset. 8. We remove any token observed less
than 10 times. 9. We partition the data by month in
order to reduce the number of fad-like topics observed
in each data set.

After pre-processing we form an ordered vocabu-
lary and generate term-frequency vectors from the doc-
uments. These we concatenate to form a data matrix
D′, where each row is a document, and each column
represents a distinct word in our vocabulary. We im-
mediately re-weight D′ using the TF-IDF scheme [23].
This re-weighted matrix we denote as D.

We denote the number of documents N , and the
number of words in our vocabulary M ; thus, D ∈
RN×M . For this analysis N > M . As a matrix of
frequency counts, D only has non-negative entries.

3.2 Non-negative Matrix Factorization: After
forming our data matrix D, we then make the assump-
tion that the rows of D are approximately the addi-
tive combination of K non-negative topic vectors, where
K � N . This is equivalent to making the assump-
tion that D is approximately of rank K, with the con-
straint that the subspace spanned by D has a set of
non-negative basis vectors and all of the rows of D have
non-negative coordinates in that basis.

Using this assumption, we have the following ap-
proximation D ≈ WHT , where W is a matrix of the
coordinates of each document in the subspace of the
rows of HT . This is the basic Non-negative Matrix Fac-
torization (NMF) [15], which has the objective function
J(W,H) = ||D−WHT ||F . The matrix norm used here
is the Frobenius norm. With a slight modification of the
above objective and use of the Kullback-Leibler (KL) di-
vergence instead of the Frobenius norm, NMF has been
shown to be equivalent to Probabilistic Latent Semantic
Indexing [4], a forerunner of LDA.

In the recent literature, good results have been
achieved using a combination of an L1 and an L2

regularizing term [22] [12]. This encourages sparsity and
somewhat prevents overfitting. Our specific objective is

given below:

J(W,H) =
1

2
||V −WH||2F + α||W ||2F + β

n∑
i=1

||H:,i||21

subject to the non-negative constraints on both W and
H.

Each of the K rows of HT may be interpreted as a
topic vector, and each entry of a given row as the relative
frequency with which a word occurs in the topic. Thus,
by sorting the entries of the row we can form ranked lists
of words describing the topic. Furthermore, each of the
N rows of W is the encoding of a document in the topic
basis. Each entry of a given row of W is the proportion
of the document that is “taken” from a given topic. In
this paper we use the active set method developed by
Kim et al. [11].

4 Earthmover’s Distance

In this section we first define the Earthmover’s Distance
(EMD) and briefly discuss its motivation, important
properties and differences from other measures and
metrics. We then discuss our usage of it and present
results.

4.1 Definition of the Earthmover’s Distance:
Let P and Q be discrete distributions:

P = {(p1, wp1), . . . , (pN , wpN )},

Q = {(q1, wq1), . . . , (qM , wqM )},
N∑
i=1

wpi = 1 and

M∑
i=1

wqi = 1.

Let d(·, ·) be a metric on the set {pi}Ni=1 ∪ {qi}Mi=1

and let fij be the scalar flow from pi to qj with the
following constraints:

fij ≥ 0,

M∑
j

fij = wpi,
N∑
i

fij = wqj .

We define the Earthmover’s Distance (EMD) as

EMD(P,Q) = min
{fij}

∑
i,j

fij · d(pi, qj),

as seen in [19]. More intuitively, if P and Q were piles
of dirt, the Earthmover’s Distance measure would be
similar to the minimum work required to move the pile
P to the pile Q. For more analytic results, the EMD is
commonly extended to continuous event spaces; in this
paper we only use the discrete version.

EMD is a metric on distributions defined over a
metric space. The metric space condition is due to the



ground distance or flow property of EMD, a property
which also separates it from other metrics such as Total
Variation.

4.2 Construction of Histograms: Once each doc-
ument in the corpus has been assigned a topic encod-
ing, we recover a empirical distribution in space and
time for each topic. Here we only rigorously address a
1-dimensional histogram, but the process is easily ex-
tended to higher dimensions.

Given an connected observational window L = [a, b]
and a fixed number of bins B, we partition the window
into B subintervals of length h = b−a

B . Each sub-interval
is defined as `j = [a + h × j, a + h × (j + 1)]. For
a given corpus D with documents di, topics Z, topic
encodings ci,z, and positions ti ∈ [a, b], we define the
distribution Pz of a given topic z ∈ Z as the following
vector (histogram):

pj,z =

∑
ti∈`j ci,z∑
di
ci,z

.

This is readily interpreted as the binned distribu-
tion of Tweets in L, reweighed by their topic encodings
and normalized so that the bins sum to one. We also
define the “uniform” weighting of the Tweets, which
we refer to as the uniform histogram; note that this
is not a Uniform distribution over space or time, but
is the binned background rate of all Tweets (uniformly
weighted).

Because the number of bins increases exponentially
with the dimension of the ground distance, common al-
gorithms for computing the exact solution to EMD scale
badly. To avoid this cost, we use an approximation
to the Earthmover’s Distance originally formulated by
Shirdhonkar and Jacobs [26] which relies on the wavelet
transform. This takes the computation from approxi-
mately O(n3) to O(n), where n is the number of bins.

4.3 Application to Twitter Timeseries: In the
context of Twitter data, we construct topic timeseries
histograms by binning the topic weighted posting times
and measuring the distance to the uniform histogram.
Ranking the results in descending order of distance, we
show in Table 1 the results. Note that here we present
only the results from December, though similar results
have been generated for other months.

4.4 Application to Twitter GPS Data: Keeping
the above histograms in mind, we would also like to
know the topics with geographic histograms “far” from
the uniform histogram in space. Using the EMD, we
have a measure of this distance, so we can measure the
distance from each topic’s histogram to the uniform

Topic 121, Distance: 158.5699
Top words:

1. merry
2. christmas
3. christmas[symbol]
4. mount
5. washington

Analysis: This topic encom-
passes Tweets about Christmas,
and posts about Mount Washing-
ton, which is both a local subdi-
vision as well as a park with coin-
ciding names. The location name
is generated by Instagram.

Topic 80, Distance: 143.2101
Top words:

1. rawr
2. ˆ0ˆ
3. kill
4. jurassic
5. dinosaur

Analysis: This topic is quite
mysterious without user data,
but upon inspection appears to
be a group of friends who use the
word ‘rawr‘, perhaps due to the
Jurassic park movie. Their usage
of the word is quite sparse.

Topic 63, Distance: 127.8254
Top words:

1. 1183
2. unknown
3. injury
4. collision
5. traffic

Analysis: This topic encom-
passes automated posts by
the California Highway Patrol,
specifically for incidents with
CHP code 1183 (Accident, no
details). The pattern exhibited
is consistent with weather
patterns in Los Angeles, with
the exception Christmas eve,
which received heavy rain but
low posting volume, implying a
lower number of accidents.

Topic 283, Distance: 118.9802
Top words:

1. 1182
2. injury
3. collision
4. traffic
5. vs

Analysis: This topic encom-
passes automated posts by the
California Highway Patrol as
well, specifically for incidents
with CHP code 1182 (Accident,
property damage). It is parallel
to the previous topic (63).

Topic 179, Distance: 2.6742
Top words:

1. got
2. present
3. [explicative]
4. card
5. nobody

Analysis: This topic one of the
closest to the uniform histogram.
It somewhat describes the possi-
ble purchase of gifts and cards,
with the mysterious inclusion of
an explicative verb in past tense.
This reflects the usage of “got
[explicative]”.

Table 1: A variety of topic histograms of Tweet density
over time. The top four are the four furthest histograms
from the uniform histogram, and the bottom is the
closest.



Figure 1: The uniform histogram for geographic space.

histogram. Ranking the results in descending order
of distance, we show in Table 2 the results and a
short analysis of the four furthest topic histograms,
and a close histogram for reference. The three furthest
histograms (Topics 194, 80, and 166) have uni- or bi-
modal distributions with very little spread. The fourth,
however, is of particular interest due to its multi-modal
nature and irregular shape.

5 Point Process Models:

In this section we construct the necessary definitions for
our second method, providing brief discussion of their
motivation and our specific usage. Results from this
method are provided in Section 6.

5.1 The Temporal Point Process Model: A
point process N is a random process where any real-
ization consists of a collection of points typically repre-
senting the times and locations of events [3]. Each point
process is characterized uniquely by its associated con-
ditional rate λ, which is defined as the limited expected
rate of the accumulation of points around a particular
location. The most basic of these processes is the sta-
tionary Poisson Process, in which events are indepen-
dent of each other, and occur at a uniform rate.

Non-stationary Poisson Processes are a generaliza-
tion of the Poisson Process to non-constant rates. A
further extension of this model is the removal of the in-
dependence assumption of the events; in particular, one
important extension is the allowance for one event to
either excite or dampen the probability of immediately
observing another event. Here we use the Hawkes pro-
cess, which takes some independent process as a back-
ground rate, and then makes the assumption that one
event will trigger another with some decaying prob-
ability to be added on top of the background rate.
Clearly this is dependent not only on the background
rate (which need not be stationary) but also the choice
of trigger function. The Hawkes process has been used

Topic 194, Distance: 9.1704
Top words:

1. citadel
2. outlets
3. commerce
4. shopping
5. others

Analysis: This topic appears to
encompass Tweets from Citadel
Outlet Malls, a shopping center
in Commerce, CA (a subdivision
of Los Angeles).

Topic 80, Distance: 6.6391
Top words:

1. rawr
2. ˆ0ˆ
3. kill
4. jurassic
5. dinosaur

Analysis: This topic is quite
mysterious without user data,
but upon inspection appears to
be a group of friends who use the
word ‘rawr‘, perhaps due to the
Jurassic park movie.

Topic 166, Distance: 5.9912
Top words:

1. ty
2. gbu
3. jc
4. wanted
5. loving

Analysis: This topic also re-
quires user data to interpret, but
upon inspection appears to be
one man. He often uses the ab-
breviations ‘ty’, ‘gbu’, and ‘jc’.
The active region appears to be
his place of residence.

Topic 158, Distance: 3.7809

Top words:
1. tracking
2. graffiti
3. station
4. plaza
5. mariachi

Analysis:
This topic describes Tweets by a graffiti tracking
service hired by the LA Metro Link. On the
righthand side are the locations of the Metro Link
stations in the area, which correspond with active
regions. “Mariachi” is one of the stations.

Topic 208, Distance: 0.2838
Top words:

1. check
2. dm
3. welcome
4. em
5. - -

Analysis: This topic is the clos-
est to the uniform histogram,
and is provided for reference.
“dm” is an abbreviation for Di-
rect Message.

Table 2: A variety of topic histograms over space.
The top four are the four furthest histograms from the
uniform histogram, and the bottom is the closest. The
axes are longitude and latitude coordinates (the x-axis
is relative to 118◦ W).



in the past to model earthquakes [25] and financial mar-
kets, as well as crime [18].

For a sequence of Tweets of topic k, we consider
their associated time series t1, . . . , tn as a realization of
a Hawkes process Nk(t) using an exponential trigger.
The conditional intensity function λk(t) of the one
dimensional Hawkes process for topic k is defined as [17]:

λk(t) = µk(t) + αk

∑
tn<t

ωke
−ωk(t−tn).

Here, µk is the background rate for topic k (i.e. Tweets
which are not triggered by other Tweets). αk is the
expected number of Tweets in topic k triggered by a
Tweet in topic k, also known as the branching factor.
ωk is a parameter controlling the rate of decay, i.e. how
quickly the overall rate λk returns to its background
level µk after a Tweet occurs in topic k. In our analysis
of the one-dimensional Hawkes model, we mainly focus
on the estimated α with respect to its topic and context.

5.2 Marked Spatio-temporal Model: The
Hawkes process can be further extended to include
both temporal and spatial information. Such a
space-time process N(t, ~x) is characterized via its
conditional intensity λ(t, ~x). For a sequence of Tweets,
we consider their sequence coordinates in space and
time (~x, t)1, · · · , (~x, t)n as such a process.

Point processes may also carry additional informa-
tion beyond their location; these data are known as
marks, and the corresponding processes are known as
Marked Point Processes. Here we carry the topic infor-
mation as a mark, using the similar notation to Mohler
[18] where the marks are used to denote different cat-
egories of crimes. We consider the set of topics M be-
lieved to be precursory of one specific topic. For ex-
ample, if we focus on the topic with descriptors “lakers
game”, we consider topics that may be potential precur-
sors (“watch TV game”, “clippers lakers”). The topic
label of a specific Tweet is indexed zij ∈ {0, 1}. The
intensity of the topic specific process is now:

λk(t, ~x) = µ(~x) +
∑
t>ti

∑
j∈M

g(~x, ~xi, t, ti, zij).

We use a triggering kernel which is specified as expo-
nential in time and Gaussian in space:

g(~x, ~xi, t, ti, zij) = zijωθj,k exp (−ω(t− ti))×
1

2πσ2
exp

(
−‖~x− ~xi‖2

2σ2

)
and a background rate estimated from all Tweets in the

M topics:

µ(~x) =
∑
t>ti

∑
j∈M

zij
γj

2πTη2
exp

(
−‖~x− ~xi‖2

2η2

)
.

The intensity function λk(t, ~x) for topic k, θj,k is
the number of Tweets in topic k triggered by an Tweet
in topic j, and is the main parameter characterizing the
relationship between the two topics. σ is the variance in
distance among triggered Tweets, reflecting the spatial
clustering of the topic. γj is the contribution of an event
in a given topic to the background rate (zero if zi = 0), ω
is again the decay timescale, and η is a background rate
scaling parameter. T is the length of the observational
window.

5.3 Pre-processing and Estimation: In order to
separate our Tweets by topic and to generate marks
for our point processes, for topic encoding matrix W
we normalize each row of the matrix. Wi,j then
represents the proportion of Tweet i consisting of topic
j. We then threshold this matrix, and take any non-
zero values as binary labels. Here we use a threshold
τ = 0.1, chosen after tuning. Note that some Tweets
are effectively removed from our dataset as they have
no assigned label. To estimate parameters, we use the
Expectation-Maximization (EM) algorithm by Veen et
al [27].

6 Results and Analysis

In this section we present results and analysis of the
Hawkes process fit to our Twitter data set. We first
include a short discussion of the Akaike Information
Criterion (AIC) with respect to their preference in
this dataset for self-exciting models, as well as the
Kolmogorov-Smirnov (KS) Test of transformed data.
For each model we then interpret selected parameters
in the context of their respective topics.

6.1 Temporal Hawkes Model: AIC values can be
used to compare the performance of different models
on a fixed dataset [20]. As an initial validation of our
model, we compute AIC scores for both a Poisson model
and a Hawkes model. Though for most models AIC is
strictly positive, here we use the AIC formulation for
point processes given by Lewis et al. [17], in which neg-
ative values are expected. Since the Hawkes model has
more parameters than the Poisson model yet reduces to
the latter in the case that any of the triggering parame-
ters are zero, by calculating the AIC scores for each we
can measure the amount to which a self-exciting model
better fits the data. In every case for every topic the
Hawkes model has a better AIC score, though the mar-
gin varies by the amount to which a topic clusters.



Figure 2: AIC values for Poisson and Hawkes models
from topics 1 to 26. Negative is better. Note that this
is only for a small subset of the topics.

We also calculate the p-values from the KS Test. In
particular, after calculating the parameters of Hawkes
process, we transform its estimated distribution to
a process of constant unit rate. The KS test here
measures the probability that the transformed time
series distribution is drawn from the same distribution
as a Poisson process. If the actual process is not a good
fit, the transformation of the time series can be expected
to not be Poisson distributed and thus deviate from the
unit rate [24].

Topic p-value Top Words
88 0.8800 ‘cold’ ‘af’ ‘outside’
90 0.4297 ‘game’ ‘clipper’ ‘laker’
113 0.0060 ‘happy’ ‘sad’ ‘holiday’ ‘bday’
24 3.818e-10 ‘ca’ ‘angeles’ ‘commerce’ ‘alhambra’

Table 3: p-values of several topics.

The Hawkes model’s validity decreases as the trans-
formed rate deviates from the unit rate, so a higher
p-value is better in this case. We only present a few
exemplar cases, but clearly for some topics the Hawkes
model is less valid, particularly when the time series is
less clustered (in the case of topic 88, cold days could be
considered a rare event in Los Angeles, and thus might
be expected to cluster well).

Strongly Branching Topics: As well as interpreting
general measures of “goodness-of-fit” and model valid-
ity we can directly interpret the estimated parameters.
The α branching factor, equal to the expected number
of Tweets triggered by an observed Tweet, is partic-
ularly interesting. In 4, we can see that topics simply

describing a situation or action, or that are less coherent
(“white center medical” and “chico fluff ice”) hold much
less predictive power than those used by Instagram to
tag pictures, or the topics describing conversations be-
tween friends. The last topic is indeed this later case
(See 2).

Table 4: Parameters of topics.
Topic Top Words µ α ω−1(day)

‘white’ ‘center’ ‘medical’ 8.25 0.13 0.00002
‘@’ ‘photo’ ‘posted’ 8.65 0.90 0.040
‘cold’ ‘af’ ‘outside’ 7.88 0.60 0.059
‘chico’ ‘fluff’ ‘ice’ 9.10 0.19 0.002

‘rawr’ ‘dinosaur’ ‘jurassic’ ‘seen’ 0.55 0.36 4.15

6.2 Marked Spatio-temporal Hawkes Model:
We again directly interpret the parameters of the
Hawkes model fit to the data. As described in section
5, σ shows the degree to which a topic clusters. We can,
as in Section 4, directly rank these coefficients and in-
vestigate the extrema topics; for example, the most spa-
tially clustered topic is about “outlets shopping” with
σ = 0.0006 (which agrees with our results in Section 4)
while the least spatial clustered topic with σ = 0.0014
is about “favorite seriously sad”.

Also described in the previous section is the param-
eter θj,k, which, for each intensity function λk(t, x, y), is
the amount to which topic j triggers Tweets in topic k.
Investigating θk,k is equivalent to investigating the self-
excitation rate (this is similar to the parameter α in the
one-dimensional unmarked case). We again show only a
few exemplar cases, as there are too many interactions
to present (K2 for K topics).

• M={Topic 123 (“end-of-world 2012”), Topic 113
(“happy sad”)},

θjk j = (123) j = (113)
k = 123 0.13 0.00
k = 113 0.19 0.97

First, it is quite interesting to note the extremely
high rate of self-excitation in the “happy sad” topic.
Second, discussion of the purported end of the world is
a precursor to Tweets discussing “happy sad”.

• M={Topic 127 (“traffic la”), Topic 82 (“food traf-
fic”)},

θjk j = (127) j = (82)
k = 127 0.78 0.48
k = 82 0.00 0.08



Los Angeles traffic is, unsurprisingly, a self-exciting
topic, but the discussion of food and traffic is a strong
precursor to a simple discussion of traffic. This may be
due to the topic of food and traffic being semantically
a subset of the topic of traffic as a whole.

• M={Topic 193(“game clipper laker”), Topic
90(“laker watching tv”)},

θjk j = (90) j = (193)
k = 90 0.72 0.81
k = 193 0.00 1.95

First, note the extreme excitation rates of both
topics; these are clearly well clustered topics temporally.
Discussion of the Lakers game informs on possible
discussion of a Lakers-Clippers game.

Finally, we can investigate these interactions on a
wider scale. We present a small example situation of 4
topics about the Lakers or related games, 2 topics about
holidays, and 4 topics about basketball in general. The
resulting excitation coefficients are presented below,
where darker means a stronger coefficient.

Figure 3: θjk for topics 1 to 10, M = 1, 2, ..., 10.

The results show that one type of holiday conver-
sation is a strong precursor to discussion of basketball
in almost every topic studied, but, appropriately, bas-
ketball does not provoke much conversation about the
holidays.

7 Conclusions and Discussion:

In this paper, we propose two methods for the analysis
of generic topic models on corpora of text with spatio-
temporal information. The first applies the Earth-
mover’s Distance to topic histograms in order to dis-

cover topics that have abnormal structure in compar-
ison with the background rate. The second measures
clustering by self-excitation, and then is extended to
measure cross-excitation rates. We present results of
both methods on a Twitter data set collected from East
Los Angeles over a 10 month span, demonstrating their
viability and usefulness. In particular, the first method
immediately selects temporally and spatially clustered
topics, where the clusters do not have a particular shape
or distribution. The second method successfully recov-
ers hidden interactions between topics which provides
deeper insight into the underlying temporal and spatial
structure of the data.
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